Figure 2. Biomass burning emissions inventory used by CATT-BRAMS model.
Figure 3. Operational model grids
Figure 4. Time series with comparison between near surface CO (ppb, top) and PM2.5 (g m-3, bottom) observed (black) and model results (red). The measurements were daily averaged, centered at 1200 Z. The error bars are the standard deviations of the mean values. The model results are presented as instantaneous values at 1200 UTC.
Figure 5. Comparison between CO (ppb) observed during sixteen flights of the LBA-SMOCC/RaCCI field campaign (black solid line represents the mean while the grey zone shows the standard deviation range) and model results (blue).
Figure 6. Comparison between the mean CO (ppb) observed during sixteen flights of the LBA-SMOCC/RaCCI field campaign (black solid line represents the mean while the grey zone shows the standard deviation range) and the mean of model results (blue).
Figure 7. CO model relative error (%) relative to the MOPITT CO retrieval for the months of August, September and October, 2002 at five vertical levels (850, 700, 500, 350 and 250 hPa). Positive values mean that model results are underestimated in reference to the MOPITT retrieved data and vice-versa.
Figure 8. Model CO mixing ratio (ppb, on the left) and the model error relative to the MOPITT CO retrievals (%, on the right) at 250, 350 and 500 hPa. Model and MOPITT data were time averaged over the days September 6, 7, 8 and 9, 2002. White areas, on the right, denote places without valid data for MOPITT during the time averaged period.
Figure 9. Model and MODIS AOT (550 nm) comparison.
Deeter, M. N., Emmons, L. K., Francis, G. L., Edwards, D. P., Gille, J. C., Warner, J. X., Khattatov, B., Ziskin, D., Lamarque, J.-F., Ho, S.-P., Yudin, V., Attié J.-L., Packman, D., Chen, J., Mao, D., Drummond, J. R.: Operational carbon monoxide retrieval algorithm and selected results for the MOPITT instrument, J. Geophys. Res., 108(D14), 4399, doi:10.1029/2002JD003186, 2003.
Freitas, S. R., K. Longo, M. Silva Dias, P. Silva Dias. Emissões de queimadas em ecossistemas da América do Sul. Estudos Avança;dos 19 (53), p.167-185. ISSN 0103-4014, 2005.
Freitas, S. R., K. Longo, M. Silva Dias, P. Silva Dias, R. Chatfield, E. Prins, P. Artaxo, G. Grell y F. Recuero. Monitoring the transport of biomass burning emissions in South America. Environmental Fluid Mechanics, DOI:10.1007/s10652-005-0243-7, 5 (1-2), p. 135 167, 2005.
Freitas, S. R., Longo, K. M. y Andreae, M. O.: Impact of including the plume rise of vegetation fires in numerical simulations of associated atmospheric pollutants, Geophys. Res. Lett., 33, L17808, doi:10.1029/2006GL026608, 2006.
Freitas, S. R., K. Longo, M. Dias, R. Chatfield, P. Dias, P. Artaxo, M. Andreae, G. Grell, L. Rodrigues, A. Fazenda and J. Panetta.: The Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS). Part 1: Model description and evaluation. Atmos. Chem. Phys. Discuss., 7., 8525-8569, 2007.
Gevaerd, R. y Freitas, S. R.: Estimativa operacional da umidade do solo para inicialização de modelos de previsão numérica da atmosfera. Parte I: Descrição da metodologia e validação, Revista Brasileira de Meteorologia, 21, 3, 1-15, 2006.
Grell, G. A. y Dezso Devenyi. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophysical Research Letters, VOL. 29, NO. 14, 2002.
Longo, K. M.; Freitas, S. R.; Silva Dias, M.A.F. Dias, P. Silva Dias. Numerical modeling developments towards a system suitable to a real time air quality forecast and climate changes studies in South America. Newsletter of the International Global Atmospheric Chemistry Project, Taiwan, v. 33, p. 12-16, 2006.
Longo, K., S. R Freitas, A. Setzer, E. Prins, P. Artaxo y M. Andreae. The Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS). Part 2: Model sensitivity to the biomass burning inventories. Atmos. Chem. Phys. Discuss., 8571-8595, 2007.
Mellor, G.L. y T. Yamada, 1974: A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci., 31, 1791-1806.
Prins, E. M., J. M. Feltz, W. P. Menzel y D. E. Ward. An Overview of GOES-8 Diurnal Fire and Smoke Results for SCAR-B and 1995 Fire Season in South America. J. Geophys. Res., 103, D24, 31821-31835, 1998.
Procopio, A. S., L. A. Remer, P. Artaxo, Y. J. Kaufman, B. N. Holben. Modeled spectral optical properties for smoke aerosols in Amazonia. Geo. Res. Letters, Vol. 30, N. 24, 2265, doi:10.1029/2003GL018063, 2003.
Smagorinsky, J., 1963: General circulation experiments with the primitive equations. Part I, The basic experiment. Mon. Wea. Rev., 91, 99-164.
Tremback, C.J., J. Powell, W.R. Cotton y R.A. Pielke, 1987: The forward in time upstream advection scheme: Extension to higher orders. Mon. Wea. Rev., 115, 540-555.
Walko R., Band L., Baron J., Kittel F., Lammers R., Lee T., Ojima D., Pielke R., Taylor C., Tague C., Tremback C., Vidale P. Coupled Atmosphere-Biophysics-Hydrology Models for Environmental Modeling. J Appl Meteorol 39: (6) 931-944, 2000.
Ward, D. E., R. A. Susott, J. B. Kauman, R. E. Babbit, D. L. Cummings, B. Dias, B. N. Holben, Y. J. Kaufman, R. A. Rasmussen, A. W. Setzer. Smoke and Fire Characteristics for Cerrado and Deforestation Burns in Brazil: BASE-B Experiment. J. Geophys. Res., 97, D13, 14601-14619, 1992.